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1. INTRODUCTION 

      The concept of fuzzy sets was introduced by Lotfi. A. Zadeh [1] and developed his own theory to 

measure the ambiguity of a fuzzy set. A fuzzy set “A”is represented as: 

                 A= {xi /µA (xi): i=1,2,3,...,n} 

Where  µA (xi) gives the degree of belongingness of the element xi to the set “A” and is defined as follows: 

µA xi =  

0, ifxi ∉ Aandthereisnoambiguity,
1, ifxi ∈ Andthereisnoambiguity,

0.5, ifxi ∈ Aorxi ∉ Aandthereismaximumambiguity,

  

        If x1,x2,…,xn  are members of the universe of discourse, with respective membership functions µA x1 , 
µA x2 , µA x3 ,…, µA xn , then all  µA x1 , µA x2 , µA x3 ,… , µA xn  lies between 0 and 1 but these are 

not probabilities because their sum is not unity. µA xi gives the elementxithe degree of belongingness to the 

set “A”.The function  µA xi associates with each  xi∈ R
n 

a grade of membership to the set “A” and is known 

as membership function. 

        The different elements xidepends upon the experimenters goal or upon some qualitative characteristics 

of the physical system taken into account; ascribe to each element  xi a non-negative number (ui>0) directly 

proportional to its importance and calluithe utility of the element xi.Then the weighted fuzzy entropy [2] of 

the fuzzy set “A” is defined as: 

H  A, U = − ui{
n
i=1 µA xi log µA xi + (1 − µA xi ) log(1 − µA xi )}                                           (1.1) 

      Now let us suppose that the experimenter asserts that the membership function of the ith element is 

μB xi  , where the true membership function isµA xi , thus we have two utility fuzzy information schemes: 

F.S  =     

x1                           x2                …      xn

µA x1              µA x2         …   µA xn 
u1                          u2                 …    un

 , 0 ≤ µA xi ≤ 1 ⩝ xi ,ui > 0                                   (1.2)          

Of a set of n elements after an experiment, and 

F.S
*=     

x1                         x2                …      xn

µB x1                µB x2         …   µB xn 
u1                            u2                 …       un

 , 0 ≤ µB xi ≤ 1 ⩝ xi ,ui > 0                              (1.3) 

of the same set of n elements before the experiment. 
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          In both the schemes (1.1) and (1.2) the utility distribution is the same because we assume that the 

utility ui of an element xi is independent of its membership function µA x𝐢 , or predicted membership 

function µB xi , ui is only a 
,
utility

,
 or value of the element xifor an observer relative to some specified goal 

(refer to [3]). 

The quantitative-qualitative measure of fuzzy inaccuracy corresponding to Taneja and Tuteja measure of 

inaccuracy [4] with the above schemes is: 

I(A; B; U) = − ui{
n
i=1 µA xi log µB xi + (1 − µA xi ) log(1 − µB xi )}                                    (1.4) 

 

Guiasu and Picard [5] considered the problem of encoding the letter output by the source (1.2) by means of a 

single prefix code with code-words c1 , c2 , … , cn having lengths l1,l2,…,lnsatisfying Kraft [6] inequality: 

                                                                D−lin
i=1 ≤ 1                                                                       (1.5) 

 Where D being the size of the code alphabet, corresponding to Guiasu and Picard [5] useful mean codeword 

length we have the following useful fuzzy mean length of the code 

                               L(A; U)=
 ui {µA  xi +(1−µA  xi )}li

n
i=1

 ui {µA  xi +(1−µA  xi )}n
i=1

                                                                  (1.6) 

and obtain bounds for it in terms of (1.4) under the condition: 

                                   {n
i=1 µA xi µB

−1 xi + (1 − µA xi )(1 − µB xi )
−1} Dli ≤ 1                (1.7) 

Where D is the size of code alphabet, inequality (1.7) is generalized fuzzy Kraft
’
s inequality. A code 

satisfying generalized fuzzy Kraft
’
s inequality is known as a personal fuzzy code.It is easy to see that for 

µA xi = µB xi ⩝xi , i = 1,2,3,… , n (1.7) reduces to Kraft [6] inequality.  

           In this paper generalized useful fuzzy code-word mean length are considered and bounds have been 

obtained in terms of generalized useful fuzzy inaccuracy measure of order α and type β .The main aim of 

these results is that it generalizes some well-known fuzzy measures already existing in the literature. 

2. Generalized measures of useful fuzzy information and their bounds: 

        Consider a function: 

Iα
β
 (A; B; U) = 

1

D
α−1

α

 1 −  
 ui {n

i=1 μ
A
β  𝐱𝐢 µB

α−1 𝐱𝐢 +(1−µA  𝐱𝐢 )
β(1−µB  𝐱𝐢 )

α−1}

 ui
n
i=1 {μ

A
β

(xi )+(1−μA
 xi )

β}
 

1

α

                                          (2.1) 

Whereα > 0 ≠ 1 , β > 0, µA xi ≥ 0, µB xi ≥ 0 ⩝xi , i = 1,2,3,… , n. D is the size of the code alphabet. 

Remarks for (2.1): 

(i) When α → 1 , β = 1, (2.1) reduces to a measure of useful fuzzy inaccuracy corresponding to 

Taneja and Tuteja [4] measure of useful inaccuracy. 

(ii) Whenβ = 1, µA xi = µB xi  ⩝xi  , i = 1,2,3,… , n, (2.1) reduces to useful fuzzy information 

measure corresponding to Autar and Khan [7] useful information measure. 

(iii) When α → 1 , β = 1, and the utility of the scheme is ignored, the measure (2.1) becomes the fuzzy 

inaccuracy measure corresponding to Kerridge [8] measure of inaccuracy. 

(iv) When α → 1 , β = 1, andµA xi = µB xi  ⩝xi  , i = 1,2,3,… , n and utility of the scheme is ignored, 

the measure (2.1) reduces to fuzzy information measure due to De Luca and Termini [9].We call 

(2.1) as generalized useful fuzzy inaccuracy measure of order αand type β. 

    Further, consider a generalized useful fuzzy code-word mean length credited with utilities and 

membership function as: 

Lα
β
(A; U) =

1

D
α−1

α

 1 −  {μ
A

β  xi + (1 − µA xi )
β}n

i=1  
ui

 ui
n
i=1 {μ

A
β

(xi )+(1−μA
 xi )

β}
 

1

α

D−li 
α−1

α
               (2.2) 

Whereα > 0 ≠ 1 , β > 0, µA xi ≥ 0 ⩝xi , i = 1,2,3,… , n. D is the size of the code alphabet. 

Remarks for (2.2): 
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(i) When α → 1 ,β = 1, (2.2) reduces to useful fuzzy mean length of the code corresponding to 

Guiasu and Picard [5]. 

(ii) When α → 1 ,β = 1, and the utility of the scheme is ignored, the mean length of the code (2.2) 

becomes optimal fuzzy code length corresponding to Shannon [10]. 

     Now we find the bounds for (2.2) in terms of (2.1) under the condition: 

                        {μA
β  xi 

n
i=1 µB

−1 xi + (1 − μA xi )
β(1 − μB xi )

−1}D−li ≤ 1                                         (2.3) 

Where D is the size of the code alphabet.It is easy to see that for β = 1, andµA xi = µB xi  ⩝xi  , i =
1,2,3,… , n inequality (2.3) Kraft [6]. 

Theorem 2.1:- For all integers D (D> 1). Letli satisfies the condition (2.3), then the generalized useful 

fuzzy code-word mean length satisfies 

                                      Lα
β

  (A; U) ≥ Iα
β
 (A; B; U)                                                                          (2.4) 

Equality holds iff 

                    li =  − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA  𝐱𝐢 )β (1−µB  𝐱𝐢 )α−1}

                                             (2.5) 

Proof:-By Holder
’
s inequality we have 

                                     xiyi ≥
n
i=1   xpn

i=0  
1

p  xqn
i=0  

1

q                                                                  (2.6) 

For all xi  , yi > 0, 𝑖 = 1,2,3,… , n and 
1

p
+

1

q
= 1, p < 1 ≠ 0 , q < 0 orq < 1 ≠ 0 , p < 0.We see the 

equality holds iff there exists a positive constant c such that 

                                                         xi
p

= cyi
q
                                                                                    (2.7) 

Making the substitution 

xi = μ
A

αβ

α−1 xi + (1 − µ
A
 xi )

αβ

α−1  
ui

 ui
n
i=1 {μA

β
(xi) + (1 − μA xi )β}

 

1

α−1

D−ii  

yi = μ
A

β

1−α  xi µB
−1 xi + (1 − μA xi )

β

1−α (1 − μB xi )
−1  

ui

 ui
n
i=1 {μA

β
(xi) + (1 − μA xi )β}

 

1

1−α

 

p =
α − 1

α
 , q = 1 − α 

In (2.6), we get 

 {μA
β  xi 

n
i=1 µ

B
−1 xi + (1 − μA xi )

β 1 − μB xi )
−1 D−li  ≥   

              {μA
β  xi + (1 − µ

A
 xi )

β}n
i=1  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
D−li 

α−1

α
  

α

α−1

    

              {μA
β  xi 

n
i=1 µ

B
α−1 xi + (1 − μA xi )

β(1 − μB xi )
α−1}  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  x i )

β }
  

1

1−α    

Using the inequality (2.3), we get 

   {μA
β  xi + (1 −  µ

A
 xi )

β}n
i=1  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
D−li 

α−1

α
  

α

1−α

≥        

                                                       
 ui {n

i=1 μA
β  xi µB

α−1 xi +(1−µA
 xi )

β (1−µB
 xi )

α−1}

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

1−α
                (2.8) 

Taking 0 < α < 1, raising both sides of (2.8) to the power  
1−α

α
 , we get 
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  {μA
β  xi + (1 − µ

A
 xi )

β}n
i=1  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
D−li 

α−1

α
  ≥  

 

                                                               
 ui {n

i=1 μA
β  xi µB

α−1 xi +(1−µA
 xi )

β (1−µB
 xi )

α−1}

 ui
n
i=1 {μA

β
(x i )+(1−μA  xi )

β }
 

1

α
             (2.9) 

 

As α < 1,
1

 1−D
α−1
α  

> 0, multiply both sides equation (2.9) by
1

 1−D
α−1
α  

> 0, we get 

 

 

1

 1−D
α−1
α  

  {μA
β  xi + (1 − µ

A
 xi )

β}n
i=1  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
D−li 

α−1

α
  ≥  

                                                              
1

 1−D
α−1
α  

  
 ui {n

i=1 μA
β  x i µB

α−1 xi +(1−µA
 xi )

β (1−µB
 x i )

α−1}

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
   

Adding both sides by  
1

 D
α−1
α  −1 

 and after simplifying, we get 

                                                        Lα
β

 (A; U) ≥ Iα
β
 (A; B; U) 

For α > 1, the proof follows along the similar lines. 

Theorem 2.2:- For every code with lengthsl1, l2,… , ln satisfies the condition (2.3), Lα
β

  (A; U) can be made to 

satisfy the inequality, 

                        Lα
β

  (A; U) ≥ Iα
β
 (A; B; U)D

1−α

α +
1−D

1−α
α

1−D
α−1
α

                                                            (2.10)   

Proof:- Let li be the positive integers satisfying the inequality 

− log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 ≤ li <  

                                      − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 + 1                             (2.11) 

Consider the interval 

                         δi =   
− log  

ui (μB
α (xi )+(1−μB  xi )

α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 ,

− log  
ui (μB

α (xi )+(1−μB  xi )
α )

 u i {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 + 1
                                (2.12)   

Of length 1.In every  δi  , there lies exactly one positive integer li such that 

0 < − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 ≤ li <  

                                      − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 + 1                           (2.13)   

 

We will first show that the sequencel1, l2 ,… , ln thus defined satisfies (2.3). From the left inequality of (2.13), 

we have 

                           − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 ≤ li  
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Or equivalently we can write 

                                        
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 ≥ D−li                                  (2.14) 

   Multiply both sides equation (2.14) by 

                                                  μA
β  𝐱𝐢 µB

−1 𝐱𝐢 + (1 − µ
A
 𝐱𝐢 )

β(1 − µ
B
 𝐱𝐢 )

−1   

And summing over i = 1,2,3,… , non both sides to the resultant expression we get (2.3). The last inequality 

of (2.13) gives 

                                          li < − log  
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 + 1  

Or equivalently we can write 

                                         Dli <   
ui (μB

α (xi )+(1−μB  xi )
α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 
−1

D   

For0 < α < 1, raising both sides to the power 
1−α

α
> 0, we get 

D−li 
α−1

α
 <   

ui (μB
α (x i )+(1−μB  xi )

α )

 ui {n
i=1 μA

β  𝐱𝐢 µB
α−1 𝐱𝐢 +(1−µA

 𝐱𝐢 )β (1−µB
 𝐱𝐢 )α−1}

 

α−1

α
D

1−α

α                                                  (2.15) 

Multiply equation (2.15) both sides by 

μA
B xi + (1 − µ

A
 xi )

B  
ui

 ui
n
i=1 {μA

β
(xi) + (1 − μA xi )β}

 

1

α

 

And then summing over i = 1,2,3,… , n, both sides to the resultant expression we get, 

        {μA
β  xi + (1 − µ

A
 xi )

β}n
i=1  

ui

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α
D−li 

α−1

α
  <   

                                                              
 ui {n

i=1 μA
β  xi µB

α−1 xi +(1−µA
 xi )

β (1−µB
 xi )

α−1}

 ui
n
i=1 {μA

β
(xi )+(1−μA  xi )

β }
 

1

α

D
1−α

α                (2.16) 

Multiply both sides equation (2.16) by  
1

 1−D
α−1
α  

> 0 then adding both sides by 
1

 D
α−1
α −1 

 and after suitable 

operations, we get   

                                               Lα
β

 (A; U) ≥ Iα
β
 (A; B; U)D

1−α

α +
1−D

1−α
α

1−D
α−1
α

 

Forα > 1, the proof follows along the similar lines, 
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